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Abstract 

If  one supposes a quantum logic L to be a a-orthocomplete, orthomodu]ar 
partially ordered set admitting a set of a-orthoadditive functions (called states) 
from L to the unit intervals [0, 1] such that these states distinguish the ordering 
and orthocomplcment on L, then the observables on L arc identified with 
L-valued measures defined on the ]3orel subsets of the real line. In this structure 
(and without the aid of Hilbert space formalism) the author shows that (1) the 
spectrum of an observable can be completely characterised by studying the 
observable (A -)t) -1, and (2) corresponding to every observable A there is a 
spectral resolution uniquely determined by A and uniquely determining A. 

1. Introduction 

Unti l  quite recent ly  the observables in non-relativistic quan tum 
mechanics have been identified with the set of self adjoint  operators on 
a separate,  infinite dimensional, complex Hilbert  space. Likewise, on 
the same Hilbert  space, the states have been identified with the t race 
operators  of t race class 1. However,  with the advent  of Mackey 's  book 
on the mathemat ica l  foundat ions of quan tum mechanics (Mackey, 
1963), bo th  observables and states have assumed a more abs t rac t  
character  having no overt  connection with Hilbert  space. This had led 
some invest igators to consider the problem of deciding which quan tum 
mechanical  results are essentially consequences of Hilbert  space 
formalism and  which can be obtained wi thout  involving Hilbert  space 
(Gudder, 1966; Ramsay ,  1966; Varadara jan ,  1962). I n  this paper  we 
will show t h a t  most  of  the desirable theorems involving spectra can be 
obtained wi thout  the use of Hilbert  space. 

2. Basic definitions 

By a partially ordered set (abbreviated poset) we will mean a pair 
(P, <~) such t h a t  P is a set and ~< is a reflexive, ant isymmetr ic ,  and 
transi t ive b inary  relation on P.  ~< is called a partial order on P.  P is 
s~id to  be bounded in case there exist (necessarily unique) elements 
0 and 1 such tha t  for all x e P ,  0 ~< x ~ 1. I f M  ~ P,  we say t h a t  M has 
an infimum (resp. supremum) providing there exists an element m e P 
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(resp. u e P )  such t h a t  x ~ P  ~ m ~ x (resp. x 4 u) and  s ~<x for 
eve ry  x ~ P (resp. x 4 s for eve ry  x c P )  ~ s 4 m (resp. u 4 s). I f  the  
in f imum (resp. s u p r e m u m )  exists  we then  wri te  m = AM (resp. 
u = vM).  I n  case M = {a, b} we wri te  h and  v as infixes, i.e., AM = a A b 
and  v M  = a v b. 

B y  an orthocomplemented poser we will m e a n  a tr iple (P, 4 ,  ') such 
t h a t  (P, 4)  is a bounded  poset  and  ' :  P -+ P is an  order  inver t ing  
involu t ion  such t h a t  for each x E P ,  x and  x '  are complements ,  x, y ~ P 
are said to  be orthogonal, wri t t en  x • y, p rovid ing  x ~< y' .  No te  t h a t  
x • y if  and  only  if  y • x. An orthomodular poset is an  or thocomple-  
m e n t e d  poser  (P, % ') sat isfying the  addi t ional  condit ions : 

(1) i f  {xl, x2, . . . ,  %} is a m u t u a l l y  or thogonal  fami ly  of  e lements  
of  P ,  t hen  

i=1 
exists,  and  

(2) if  x, y e P, x 4 y, t hen  y = x v (y A x'). 

x, y e P are said to  commute, wri t ten  x C y, p rovid ing  there  exist  three  
m u t u a l l y  or thogonal  e lements  x l ,y l , z  EP  such t h a t  x = x l  v z and  
y = yl  v z. I t  is a s t anda rd  resul t  t h a t  

x C y ~ x ' C y c > x C y '  c ~ x ' C y ' .  

Also i f x  and  y are comparab le ,  t hen  x C y. The following theorem,  due 
independen t ly  to D. J .  Foulis  and  S. Hol land,  J r . ,  is mos t  useful when  
working wi th  o r t h o m o d u l a r  posets.  I t s  p roof  is similar  to t h a t  for 
lat t ices,  and  the  la t te r  can be found  in Foulis  (1962, p. 68, Theo rem 5). 

2.1. Theorem 

Le t  P be an  o r thomodu la r  poset ,  a, b, e ~ P.  Suppose t h a t  a v b, 
a n c, b A c, (a v b) h c, and  (a n c) v (b A e) all exist  in P,  and  t h a t  two 
of the  th ree  re la t ions a C b, a C e, b C c hold. Then  

( a v  b) A C =  (aA C) V (SA C) 

Also, assuming  app rop r i a t e  existence,  this  resul t  toge the r  wi th  the  
above  r e m a r k s  imp ly  t h a t  

(a A b) v c = (a v c) ^ (b v e) 

I f  P has  the  p r o p e r t y  t h a t  the  join of  a countable  or thogonal  fami ly  
a lways  exists  in P ,  then  we say  t h a t  P is a-orthocomplete. For  the  
r ema inde r  of  this pape r  we will assume t h a t  P has this p roper ty .  
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Le t  ~ denote  the  Borel  subsets  of  the  real line ~ .  B y  an observable 
(or P-valued measure) on ~ we m e a n  a m a p p i n g  

such t h a t  

A:~- - -~-P  

(3) A(r = 0, A ( ~ )  = 1, 

(4) E , F  e ~ ,  E A F = r ~ A(E)  J_ A(F),  and  

(5) if{E~li ~- 1,2 . . . .  } is a fami ly  of  dis joint  subsets  o f ~ ,  then  

A Ei = V A(E~) 
i=1  

We denote  the  set of  all observables  b y  (~. 
B y  a state on an  o r thomodu la r  poser P we m e a n  a funct ion 

such t h a t  

~ : P  -~ [0, 1] 

(6) a (0)  = 0, e (1 )  = 1, and  

(7) if  {xiIi = l, 2 , . . .}  is a m u t u a l l y  or thogona l  fami ly  in P ,  then  

- ~ = 1  ~ ( x d  

I t  is easily shown t h a t  if  ~ o A = fi o A for every  A e (r then  a = ft. 
Note  t h a t  for a n y  observable  A and  a n y  s ta te  ~, a o A : ~  ~+ [0, 1] is 
a Borel  p robab i l i t y  measure .  I f  Xl,X2 e P  with  x I ~< x2, t hen  a(xl) ~< 
~(x2) for eve ry  s ta te  ~. I f  ~ is any  set of  s ta tes  for P we say  t h a t  ~ is 
ful l  provid ing  t h a t  a(xl) ~< ~(x2) Va ~ ~ ~ xl  ~< x2. No t  all or tho-  
m odu la r  posers admi t  a full set of  s tates ,  for M. K.  Benne t t  (1968) 
has  shown t h a t  G~2, the  Greechie 32-element lat t ice,  fails to admi t  a 
full set  of  states.  We  define a quantum logic (or s imply  a logic) to be any  
a -o r thocomple te  o r t homodu la r  poser  L t h a t  admi t s  a full set of  s tates .  
Hence fo r th  the  symbol  L will represent  a logic and  ~ a full set of  
s t a t e s  on L. I f  A , B  ~ (9 and a o A = a o B Va e ~<f, then  A = B. B y  
the  resolvent of an  observable  A we mean  the  set r(A) defined b y  

r(A) = U { I I I  is an  open inverva l  in ~ and  (Va 6 ~ ) ( ~  o A(I )  = 0)} 

B y  a spectrum of A we m e a n  the  set  

#(A ) = ~"~.r(A ) 
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The point spectrum of  A is the set 

p(A)  = {x e ~13~ e ~ such t ha t  ~ o A({x}) r 0} 

I t  is easy to see t ha t  p(A)  c s(A). The continuous spectrum of A is the  
set 

c(A) = s ( A ) ~ p ( A ) .  

2.2. Theorem 

Let  A E ~). Then  

(i) s(A) is closed. 
(ii) x e s(A) <:~ (V �9 > O)(3 o, e hf)(a o A ( x -  e, x + e) r O). 

(iii) (V a e ~9~ o A(s(A))  = 1 and a o A(r(A))  = 0). 
(iv) s(A) = (?{E[E is closed and (Y a c 5P)(a o A(E)  = 1)}. 

Proof: (i) is clear 

(ii) x c s(A) ~ x ~ r(A) ~:> V open in terval  I containing x 3 an 
~ 5  p such t h a t  ~ o A ( I ) ~ O ~ ( V e > O ) ( 3 ~ f )  such t h a t  
o A ( x - - E , x  +~) r O. 
(iii) ~ o A(s(A))  = 1 - ~ o A(r(A)).  B y  the  s t ruc ture  of  open sets in 
we can find a countable  collection {IK} of  open intervals  such t h a t  

r(A) = ~J IK 
K=I  

Hence 

I >j ~ o A(s(A))  = I -- ~ o A(r(A))  = I -- ~ o A ( ~JK=~ IK) >~ 

1- -  ~ e o A ( I K ) = l  
K=I  

(iv) Le t  E be a closed subset of  N such t h a t  (V a) (e o A(E)  = 1). 
Then  ~ E  is open and  (V a)(a o A ( ~ \ , E ) .  Clearly ~ E  c r ( A ) =  
~ s ( A )  so s(A) c E. 

A subset  B of  L is said to  be a Boolean subalgebra (resp. a-subalgebra) 
of  L providing 

(8) B is closed under  joins (resp. countable  joins) in L, 
(9) B is closed under  ', and 

(10) B is a Boolean algebra with respect  to joins, meets,  a n d '  in 
L, 
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I t  is easily seen t ha t  if  B is a Boolean subalgebra of  L, t h en  
x, y e B ~ x C y. I t  is a s t ra ight forward  exercise, involving Theorem 
2.1, to show t h a t  for eve ry  A e 0, A (~)  is a Boolean a-subalgebra of  L. 

3. Spectral Mapping Theorems and the Observable A - 11 

I f  the  logic L is t aken  to be the project ion latt ice of a complex 
Hi lber t  space 5 f ,  then  via the  spectral  theorem,  the set of observables 
can be identified wi th  the  self adjoint  operators  on J~f. One can then  
classify the spectra  of  A by  considering the  character  of  (A - ;~I) -1. 
In  this section we will show tha t  this classification procedure  can be 
done complete ly  wi thout  the  aid of Hi lber t  space formalism. In  
establishing this result  we will have  occasion to prove  some spectral  
mapping  theorems.  

Le t  f be a real  va lued funct ion whose domain,  dom f,  is a subset of  
the  reals. We say t ha t  f is a Borel function providing dom f e 2 and 
for each G E :~, f - l (G) ~ ~ .  AClearly any  A Borel  funct ion f can be 
ex tended  to a Borel  f u n c t i o n f  where dom f = ~ .  (Just  def iner (x)  = 0 
for x e ~ , d o m  f.)  I f  f is a Borel  funct ion with dora f = ~ and if  
A e ~, we define f ( A )  to  be the observable A o f  -1. I f  d o m f  ~ ~ we 
say  t ha t  f (A )  exists or is defined providing it  is the  case t h a t  for every  
pair  of Borel  extensions f l ,  f~ o f f  with dom(f l )  = d o m ( f 2 )  = ~ we have 
f l(A) = f2(A ). I f  f (A) exists we define f (A) to b e f  (A) for any  extension 
f o f f  wi th  dom( f )  = ~ .  

3.1. Theorem 

Let  A e 0 , f a  Borel  function.  T h e n f ( A )  exists ~ ~ o A ( d o m f )  = 1 
for all ~ ~ 5 ~. 

Proof: I f f ( A )  exists, let y~ e f ( d o m f )  and let Yl r Y2. Define 

If(x) for x e d o m f  (i = 1 or 2) 
f~(x) = (yi for x e ~ d o m  f 

Each  fi is a Borel  extension o f f .  Thus for each c~ ~ ~o, 

o A of~-l({y2}) = ~ o A o f~-l({y2}) 
so  

a o A(fi-l((y2})) = e o A(f~-l((y~})) 
Bu t  

fi-~((Y2})=f-~({Y2}) and  f~-~({Y2}) = ( ~ \ d o m f )  Uf-l({y2}) 

Thus  

o A(f-~((y2})) = ~ o A ( N \ d o m f )  + ~ o A(f-~((y2})) 
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for  each  a e ~ .  
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o A ( ~ d o m  f )  = 0 

o A ( d o m f )  = 1 

Converse ly ,  suppose  t h a t  ~ o A ( d o m  f )  = 1 for  e v e r y  ~ e ~ so t h a t  
o A ( ~ d o m f )  = 0 for  e v e r y  ~ e :9~ L e t  f l , f 2  be Bore l  ex tens ions  

o f f .  T h e n  
f ~ l ( E )  n d o m  f = f~-~(E) N d o m f  

for  all E e ~ .  N o w  X/~ e ~<f, X /E  e ~ ,  

o ( f i ( A ) ) ( E )  = ~ o A ( f v ~ ( E ) )  

= ~ o A ( f v ~ ( E )  N ( ( ~ \  dora  f )  U dora  f ) )  

= o~ o A(f~-~(E) N ( ~ d o m  f ) )  + ~ o A(f~-~(E) n d o m  f )  

= ~ o A(f~-~(E) n dora  f )  
T h u s  

o f l ( A )  = ~ o f 2(A) 
Since 5e is full, 

f~ (A)  = f 2 ( A )  

3.2. Theorem 

L e t  A e (~ and  suppose  t h a t  for  a Borel  f unc t ion  f ,  f ( A )  is defined.  

(i) ~ o A ( d o m f  n s(A)) = 1 V a e :)o. 

(ii) 8(A) c d o m f ]  
(iii) f ( A )  = A o f  -1. 
(iv) I f  g ( f ( A ) )  is defined,  t h e n  so is (ff o f ) ( A )  a n d  g ( f ( A ) ) =  

(g o f ) ( A ) .  

Proof :  (i) 

1 = ~ o A ( d o m f  U 8(A)) = a o A ( d o m f \ s ( A ) )  

+ ~ o A ( d o m f  n s (A))  + ~ o A ( s ( A ) \ d o m f )  

= ~ o A ( d o m  f N s (A) )  

(ii) B y  T h e o r e m  3.1, ~ o A ( d o m f ) =  1 for  e v e r y  ~ e ~9 ~ H e n c e  

a o A(domf_)  = 1 for  e v e r y  ~ e ~9 ~ N o w  a p p l y  2.2(iv). 
(iii) L e t ]  be a n y  ex tens ion  o f f .  T h e n  

V ~ e ~ ,  V E e r ,  

o f ( A ) ( E )  = ~ o f ( A ) ( E )  = ~ o A ( f - ~ ( E ) )  

= ~ o A ( f - I ( E )  n d o m f )  

+ ~ o A ( f - ~ ( E )  N ( N ~ d o m  f ) )  

= ~ o A ( f - ~ ( E )  N d o m f )  = e o A ( f - ~ ( E ) )  
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3.3. Lemma 

Let  A E 0, and  let f be a Borel  funct ion such t h a t  f ( A )  is defined. 
Then  

s ( f (A))  a f ( s (A))  
Proof: 

o f ( A ) ( f ( s ( A ) ) )  = ~ o A( f -~( f ( s (A) ) ) )  >~ ~ o A ( d o m f  ~ s(A)) = 1. 

Hence  V ~ ~ ~ ,  ~ o f ( A ) ( f ( s ( A ) ) )  = 1 and  so b y  2.2(iv), s( f (A))  

f (s (A)) .  

3.4. Theorem 

I f f  is cont inuous on s(A), or i f f  has a cont inuous extension to s(A), 
and if  f (A) exists, t hen  

s( f (A))  =f ( s (A) ) .  

Proof: B y  3.3 it  suffices to p rove  t ha t f ( s (A ) )  c s( f (A)) .  I f  f is a con- 

t inuous  extension of  f to s(A), t h e n / ( A )  = f ( A )  andf ( s (A) )  a / ( s ( A ) ) .  

Thus  it would suffice to show in this case t h a t  f ( s (A))  c s(f(A)). I n  
o ther  words,  we can suppose t h a t  f is defined and  cont inuous on all of  
s(A). 

Le t  y c f ( s (A) ) .  Then  there  exists  a sequence (x~ ~ s(A) such t h a t  
f (xi)  -~ y. B y  2.2(ii), we have  t h a t  ~ / 3 ~  0 there  exists  a e 5 :  such t h a t  
a o A(x~ - 5, xi + 5) r O. Therefore,  b y  cont inui ty ,  Y e > 0, there  
exists ~ ~ ~ such that 

o f ( A ) ( f ( x i )  - E,f(x~) + E) = ~ o A(f-~(f(x~) - E,f(xi) + E)) 

>1 ~ o A ( ( x ~ -  ~:(~, x~), x~ + ~:(~,x~)) o s(A) r 0 

Thus  b y  2.2(ii),f(xi) E s( f (A))  V i. Since s( f (A))  is closed, y e s( f (A)) .  
An observable  A is said to be bounded provid ing  t h a t  s(A) is com- 

pact .  Fo r  bounded  observables  we obta in  the  following. 

3.5. Corollary (Spectral Mapping Theorem) 

I f  A is a bounded  observable ,  f a Borel  funct ion defined and  con- 
t inuous  on s(A), t hen  if  f (A) exists,  s( f (A))  =f (s (A) ) .  

A e (~ is said to be invertible provid ing  f ( A )  exists  for the  funct ion 
f ( x )  = 1/x. I n  this  ease we wri te  A -1 = f ( A ) .  According to Theo rem 
3.1, A is inver t ib le  i f  and  only i r a  o A((0}) = 0 ~/~ e 5f.  I n  par t icular ,  
i f  0 ~ s(A), t hen  A -1 exists.  

19 
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3.6. Theorem 

L e t  A e & be  inver t ib le .  T h e n  

(i) (A-~) -1 ex is t s  a n d  ( A - l )  -~ = A.  
(ii) 0 6 s(A)  ~ A -1 is b o u n d e d .  

(iii) A b o u n d e d  ~ 0 6 s(A-~).  

Proof: (i) L e t  
f l / x f o r x  # O 

f ( x )  = [0 for  x = 0 
T h e n  

A -~ = f ( A ) .  N o w  ~ o A-~({0}) = a o f ( A ) ( { 0 } )  

= a o A(f-I({0})) = c~ o A({O}) -- 0 V ~ e ~9 ~ 

w h e n c e  A -1 is inver t ib le .  T h u s  

(A-~) -1 = f ( f ( A ) )  = ( f  o f ) ( A )  = A 

(ii) 0 r s(A)  ~ t h e r e  ex is t s  an  open  i n t e r v a l  I = ( - y , y )  such  t h a t  
0 e I c r(A).  T h u s  ~ I  D ~ r ( A )  = s(A).  Since O r s(A),  f ( x )  = 1/x 
is c o n t i n u o u s  on s(A)  a n d  so b y  T h e o r e m  3.4, 

s(A-~ ) = f (s(A ) ) c f ( ~ I )  = [ - ; ,  ~] 

T h u s  s(A -1) is c o m p a c t .  
T h e  p r o o f  of  (iii) is s imi la r  to  (ii). 
I f  we define fa  : ~  -~  ~ b y  fa(x) = x - ~, t h e n  i t  is n a t u r a l  to  wr i t e  

A - ~ = fa (A) .  W e  n o w  s h o w  t h a t  s p e c t r a  can  be classified us ing  A - 
in e x a c t l y  t he  s a m e  m a n n e r  as is u sua l l y  done  in o p e r a t o r  t heo ry .  

3.7. Theorem 

L e t  A e d). 

(i) 2 e r(A)  ~:~ (A - ~)-1 exis t s  a n d  is b o u n d e d .  
(ii) A �9 p ( A )  r (A - ~)-1 does  no t  exis t .  

(iii) 2 �9 c(A) r (A - ~)-1 exis ts  a n d  is n o t  b o u n d e d .  

Proof: ~Te f irst  o b s e r v e  t h a t  V 2fA is c o n t i n u o u s  on s(A).  I t  fol lows 
t h a t  

s(A - ~) = s (A)  - {~} 

(i) (A - ~)-1 exis ts  a n d  is b o u n d e d  

r 0 ~ s(A - ~) r 0 ~ s ( A ) -  {~} r i# s(A) ~:~A �9 r (A)  

(ii) (A - ~)-~ fails to  ex is t  r 3 a �9 ~ such  t h a t  a o A(f~-l({0}) 
0 r 3 a �9 S f  such  t h a t  a o A({A}) # 0 r � 9  

(iii) ~ �9 c(A) ~ (i) a n d  (ii) f~il. 
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4. The Spectral Theorem 

As ment ioned  before,  i f L  is the  project ion latt ice of a t t i lbe r t  space 
5(~, t hen  the observables can be identified wi th  the set of self-adjoint 
operators  on J{~. Then,  via the spectral  theorem for self-adjoint 
operators ,  there  is a one-to-one correspondence between observables 
and spectral  resolutions of  the ident i ty .  In  this section we will show 
t h a t  the  same result  is possible for any  logic L. The au thor  would like 
to  t h a n k  D. J .  Foulis who showed him the  details of this section. 

B y  a real (respectively rational) spectral resolution in L we mean  a 
funct ion e : ~ - +  L (resp. e: ~ - *  L where ~ is the  set of  ra t ional  
numbers)  such t ha t  the  following conditions are satisfied 

(11) ;~</z ~ e1~<%, 
(12) A1e;~ = 0, 
(13) v ~ e t =  1, 
(14) A ea = % for all/~ ~ ~ (resp. 2).  

/~<~ 

I t  is quite clear t ha t  if  A E &, then  the funct ion e ~ : ~ -* L defined 
by  e~ = A((-oo, ~]) is a spectral  resolut ion in L. On the  other  hand,  it 
ea is a spectral  resolut ion in L, does there  exist  an A such tha t  e A = e~ ? 
We will show t h a t  providing the  range of ea is contained in a Boolean 
a-subalgebra of  L, t h a t  the  answer is yes. This last requ i rement  is a 
reasonable one since for any  A ~ (9, range A is a Boolean a-subalgebra 
of  L. Thus  our  problem is reduced to proving the following lemma. 

4.1. Lemma 

Let  B be a Boolean a-algebra. Then if  e is any  spectral  resolution in 
B, there  exists a B-valued  Borel  measure A such t h a t  e~ = A(( -~ ,  ~]). 

The proof  of  this ]emma involves a construct ion t h a t  hinges on the 
following obvious bu t  crucial lemma. 

4.2. Lemma 

Let  B be a Boolean e-algebra. Then  there  is a one-to-one corre- 
spondence between real and ra t ional  spectral  resolutions on B as 
follows : 

(i) if  e : ~  -+ B is a real spectral  resolution, t hen  the rat ional  
spectral  r e so lu t i on f  associated with it  is given b y f  = e l~, and 

(ii) if  f :  ~ -+ B is a ra t ional  spectral  resolution, t hen  the real 
spectral  resolut ion e associated with it is given by  

19" 
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For the remainder of this section we shall suppose that  B is a 
Boolean a-algebra. By Loomis Theorem (Halmos, 1950, p. 171, 15c) 
there exists a measurable space (X, ~ )  and a a-ideal ~4~ c ~ '  such 
that  B - ~ / X .  We propose to identify B with Jt'/M z and to let 

: dr' -~ B be the natural epimorphism. Now suppose e : ~ -> B is a 
real spectral resolution and let f :  ~ -+ B be the restriction of e to ~.  
For each rational number h ~ ~ choose a set P~ ~ J/ such that 
~(PA) =fA. Then for each I c ~ define 

F~ = n { F / a  < p, p e ~} 
I t  is easily seen that  if 1,/~ e ~ with A ~</x, then_/~ c P~. Also a simple 
computation shows that for every A E ~, v(Fa) =f;~. Now define 

I t  then follows that  1,/~ c ~ with t ~</x that  -Pa c P~. Also, N !? t = 0 
Ae2 

and V(-Pa)=fz. Finally, define 

F t =  F t U  X " . x U F  ~ i f 0 ~ < A , l ~  

4.3. Len~ma 
{Falt + m} is a rational spectral resolution in ~ and V(Fa) = f a  for 

all A e ~. 

Proof: Conditions (11), (12), and (14) are clearly satisfied. 

and so (13) holds also. 
I f1  < 0, then v(Fa) = f a  is clear. I f  0 ~< t, then 

(,(.y. v ( : .  v (:+) 
= J i  v 1' = fAv 0 = f a  

In any case, V(f1) =fa .  
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We nex t  app ly  L e m m a  4.2 to the ra t ional  spectral  resolut ion F t  and  
obta in  a real spectral  resolut ion E : ~  -~ ~#. I t  is easily checked t h a t  
v ( E ~ )  = % 

4.4. Lemma 

Let  ( X , ~ ' )  be any  measurable  space and let (EAI2 E ~ }  be any  
spectral  resolut ion in J [ .  Then  there  exists a unique measurable  
funct ion f :  X -~ ~ (measurable in the sense t h a t  E ~ ~ ~ f - l ( E )  e ~ ' )  
such t ha t  

E~ = f-~((-oo,  2]) 

Proof: Def inef (x)  = inf{2 c ~ l x  ~ E~}. I t  is then  a s t ra ightforward 
a rgument  to show tha t  f -1(( -o% 2]) = E~. S i n e e f  -1 preserves comple- 
ments  and  countable  unions it follows t ha t  f is measurable.  

L e m m a  4.4 essentially concludes our construct ion.  I t  follows from 
this t ha t  if  e : ~ -+ B is a real spectral  resolution t h a t  there  exists a 
unique B-va lued  measure A : ~ --> B such t ha t  A ((-0% 2]) = e A V 2 e ~ .  
To see this, lift e to a spectral  resolut ion (E~[2 e ~ }  in J/r Construct  f 
as in 4.4 and  let A = ~ o f  -1. 

All of  the  following can be collected in the  following theorem. 

4.5. Theorem (The Spectral Theorem) 

Let  e : ~ -+ L be a real spectral  resolution, B a a-subalgebra of  L 
containing range e. Then  there  exists a unique observable A on L such 
that 

(i) range A c B, 
(ii) A ( ( - + , A ] )  = ea. 

Conversely,  if  A is any  observable on L, then  range A is a Boolean 
a-subalgebra of  L and e a = A ( ( - ~ ,  2]) defines a real spectral  resolution 
in L. 

5. Expectation 

For  each observable A and each s ta te  ~, ~ o A is a Borel  probabi l i ty  
measure.  Thus,  one can define a real number  called the expectation of A 
in the state ~ (when it  exists), wr i t ten  exp,(A),  b y  the integral  

exp . (A)  = f id(c~ o A) 

where i is the  iden t i ty  function.  I f  ea is the  spectral  resolut ion associ- 
a ted  with A, t hen  this can be wr i t ten  as the  Stieltjes integral  

exp . (A)  = / Ada(eA). 
- - o 0  
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I f  A is bounded then it is clear that  exp,(A) exists for all states ~. 
I fA  is unbounded, exp~(A ) may not exist, e.g., the position observable 
in ordinary quantum mechanics. Nevertheless, we can establish the 
following. 

5.1. Theorem 

Let A be any observable, ~ any state, a n d f  any Borel function such 
that  

(i) f ( A )  exists, and 

(ii) f fd~ o A exists. 

Then exp:(f  (A)) exists and moreover 

exp.(f (A)) = / fd(a o A) 
domf ns( A ) 

Proof: Let  

dom f 

s (g(A)) g(s(A)) 

since by 3.3, 

s(g(A)) c g(s(A)) and (a o g(A))[g(s(A))~s(g(A))] = O 

But since 

and 

we have 

Thus by Halmos (1950, p. 163, Theorem C), 

exp~(f(A)) = f gd(a o A) 
g-l(g(s(A))) 

s(A) c g-~(g(s(A))) c g-l(g(s(A))) 

(~ o A)(g-!(g(s(A)))~s(A))  = O 

exp~(f(A)) = f gd(a o A ) =  / fd(o~ o A) 
s( A ) domf ~s(  A ) 

Then 

exp,(/(A)) = exp~(g(A)) = f id(~ o A o g-l) 
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