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Abstract

If one supposes a quantum logic L to be a o-orthocomplete, orthomodular
partially ordered set admitting a set of o-orthoadditive functions (called states)
from L to the unit intervals [0, 1] such that these states distinguish the ordering
and orthocomplement on L, then the observables on L are identified with
L-valued measures defined on the Borel subsets of the real line. In this structure
(and without the aid of Hilbert space formalism) the author shows that (1) the
spectrum of an observable can be completely characterised by studying the
observable (4 — A)~1, and (2) corresponding to every observable 4 there is a
spectral resolution uniquely determined by A4 and uniquely determining 4.

1. Introduction

Until quite recently the observables in non-relativistic quantum
mechanics have been identified with the set of self adjoint operators on
a separate, infinite dimensional, complex Hilbert space. Likewise, on
the same Hilbert space, the states have been identified with the trace
operators of trace class 1. However, with the advent of Mackey’s book
on the mathematical foundations of quantum mechanics (Mackey,
1963), both observables and states have assumed a more abstract
character having no overt connection with Hilbert space. This had led
some investigators to consider the problem of deciding which quantum
mechanical results are essentially consequences of Hilbert space
formalism and which can be obtained without involving Hilbert space
(Gudder, 1966; Ramsay, 1966; Varadarajan, 1962). In this paper we
will show that most of the desirable theorems involving spectra can be
obtained without the use of Hilbert space.

2. Basic definitions

By a partially ordered set (abbreviated poset) we will mean a pair
(P, <) such that P is a set and < is a reflexive, antisymmetric, and
transitive binary relation on P. < is called a partial order on P. P is
said to be bounded in case there exist (necessarily unique) elements
0and 1such thatforallz e P,0 <z < 1. If M = P, we say that M has
an infimum (resp. supremum) providing there exists an element m € P
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(resp. w € P) such that x € P => m <z (resp. x<u) and s<x for
every x € P (resp. x < s for every x € P) = s < m (resp. u < s). If the
infimum (resp. supremum) exists we then write m =AM (resp.
u=vM). In case M = {a,b} we write A and v as infixes,i.e., A =an b
andvM =av b.

By an orthocomplemented poset we will mean a triple (P,<,’) such
that (P,<) is a bounded poset and ': P — P is an order inverting
involution such that for each # € P, and 2’ are complements. x,y € P
are said to be orthogonal, written z | ¥, providing = < y’. Note that
z | yifand only if ¥ | x. An orthomodular poset is an orthocomple-
mented poset (P, <,’) satisfying the additional conditions:

(1) if {&;,,,...,2,} is a mutually orthogonal family of elements
of P, then

exists, and
(2) ifw,yeP,x<y, theny=av (yr2).

x,y € P are said to commute, written x C y, providing there exist three
mutually orthogonal elements x4,y4,2 € P such that =, v z and
y =y, v 2. It is a standard result that

xCy<=a' CywaCy <o Cy.

Also if z and y are comparable, then # C y. The following theorem, due
independently to D. J. Foulis and S. Holland, Jr., is most useful when
working with orthomodular posets. Its proof is similar to that for
lattices, and the latter can be found in Foulis (1962, p. 68, Theorem 5).

2.1. Theorem

Let P be an orthomodular poset, @,b,c € P. Suppose that av b,
anc,bac,(@avd)ac and (aac)v (bac)all exist in P, and that two
of the three relations @ C b, @ C¢, b C ¢ hold. Then

({avbyac=(anc)v(bac)

Also, assuming appropriate existence, this result together with the
above remarks imply that

(@aad)ve=(avela (bve)

If P has the property that the join of a countable orthogonal family
always exists in P, then we say that P is g-orthocomplete. For the
remainder of this paper we will assume that P has this property.
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Let & denote the Borel subsets of the real line #Z. By an observable
(oxr P-valued measure) on # we mean a mapping

A B —-P
such that

(3) A(¢)=0,4(Z%) =1,
4) EEFe#,ENF=¢ = A(E) | A(F), and
(6) if {E;|i =1,2,...} is a family of disjoint subsets of Z, then

4 (Ql Ei) - .31 A(E,)

p=

We denote the set of all observables by 0.
By a state on an orthomodular poset P we mean a function

o:P —[0,1]
such that

(6) a(0)=0, x(1) =1, and
(7) if {x;]¢ = 1,2,...} is a mutually orthogonal family in P, then

0‘( 95@) = 2 ;)
i=1 i=1

It is easily shown that if « 0 A = o 4 for every 4 € @, then « = .
Note that for any observable 4 and any state o, « 0 4:% — [0,1] is
a Borel probability measure. If z,,2, € P with x; < ®,, then «(x;) <
a(z,) for every state «. If & is any set of states for P we say that & is
Jull providing that «(x;) < ;) Va € F = 2y <xy. Not all ortho-
modular posets admit a full set of states, for M. K. Bennett (1968)
has shown that G,, the Greechie 32-element lattice, fails to admit a
full set of states. We define a quantum logic (or simply a logic) to be any
o-orthocomplete orthomodular poset L that admits a full set of states,
Henceforth the symbol L will represent a logic and % a full set of
states on L. If 4,Be @ and x 0 A =a 0 BVa e &, then 4 = B. By
the resolvent of an observable 4 we mean the set 7(4) defined by

7(4) = U{I|I is an open inverval in Z and (Vo € &) (x 0 A(I) = 0)}
By a spectrum of A we mean the set

s(4) = B\ r(4)
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The point spectrum of A4 is the set
= {r € #|3x € & such that « o A({x}) # 0}

It is easy to see that p(A4) < s(A4). The continuous spectrum of 4 is the
set

A) = s(4)\p(4)

2.2. Theorem
Let 4 € 0. Then

(i) s(4)is closed.

(i) ves(d) < (Ve>0)(Jae F)(awo Alx—e, x+ €) #0).
(iii) (foey)(a 0 A(s(4))=1and a o A(r(4)) = 0).
(iv) s(4)= N{E|E is closed and (V « € &) (x 0 A(E)=1)}.

Proof : (i) is clear

() x es(d) < x ¢r(d) < V open interval I containing 3 an
ae S such that o0 A(I)#0 < (Ve>0)(Fxec &) such that
coA@x—e x+¢€)#0.

(iii) o« 0 A(s(A4)) =1 — « 0 A(r(4)). By the structure of open sets in
Z we can find a countable collection {I} of open intervals such that

()= U Ix

K=
Hence

1>ocoA(8(A))=1—ocoA(r(A))=1—ocoA(KQIIK)>
1— S wod(lg)=1
E=1

(iv) Let F be a closed subset of # such that (V «)(«x 0 4A(E)=1).
Then £\ X is open and (V «)(x 0 A(#\ E). Clearly Z\ K < r(4d) =
A\s(4)s0 s(4) < E.

A subset B of L is said to be a Boolean subalgebra (vesp. o-subalgebra)
of L providing

(8) Bis closed under joins (resp. countable joins) in L,
(9) Bis closed under ’; and
(10) Bis a Boolean algebra with respect to joins, meets, and ’ in

L,
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It is easily seen that if B is a Boolean subalgebra of L, then
x,y € B = x Cy. It is a straightforward exercise, involving Theorem
2.1, to show that forevery 4 € 0, A(%#)is a Boolean o-subalgebra of L.

3. Spectral Mapping Theorems and the Observable A — Al

If the logic L is taken to be the projection lattice of a complex
Hilbert space 5, then via the spectral theorem, the set of observables
can be identified with the self adjoint operators on . One can then
classify the spectra of 4 by considering the character of (4 — AI)~?!
In this section we will show that this classification procedure can be
done completely without the aid of Hilbert space formalism. In
establishing this result we will have occasion to prove some spectral
mapping theorems.

Let f be a real valued function whose domain, dom f, is a subset of
the reals. We say that f is a Borel function providing dom f € 4 and
for each G e %, f~YGF) e B. Clearly any Borel function f can be
extended to a Borel funetlon f where dom f = . (Just define fa)y=
for x e Z\dom f.) If f is a Borel function with dom f= % and 1f
A € 0, we define f(A) to be the observable 4 o f~1. If dom f # % we
say that f(4) exists or is defined providing it is the case that for every
pair of Borel extensmns J1 foof f with dom(f;) = dom(fz) = % we have
J1(4) = [fo(d). If f (4) exists we define f(4) to be f(4) for any extension
f off with dom(f) %

3.1. Theorem

Let 4 € 0, fa Borel function. Then f(4) exists <> « 0 A(dom f) =1
forall « € &.

Proof : If f(A) exists, let y, € f(dom f) and let ¢, # y,. Define

_ [f(z) for x € dom f
fi(®) = {yZ for x € Z\ dom f

Each f; is a Borel extension of f. Thus for each « € &,
2o dofri({ys}) =04 ofi({y:})

a0 A(fi' ({y2})) = « 0 A(fz({y2})

(t=1or2)

SO

But
Ji w2 =f"{ys}) and  fi'({y2}) = (Z\dom f) U f~*({ys)})
Thus
w0 A(f'({y2}) = « 0 A(Z#\dom f) + « 0 A(f~ ({y2)}))
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whence
o 0 A Ndom f) =0
Therefore
oo A(dom f)=1

for each o € &.

Conversely, suppose that « o A(dom f) = 1 for every « € % so that
o 0 A(Z#\dom f) =0 for every o € &. Let fi, f, be Borel extensions
of f. Then

THE) Ndom f=fY(E) N dom f

forall B € 4. NOWVoce.?, VEc%,
a o (fi(A)(E) = o o A(fi(E))
=a o A(fiY{(E) N (#\dom f) U dom f))
— o 0 A(f71(B) N (#\dom )+« 0 A(fi*(E) N dom f)
(

=o¢oA(f@1E)ﬂdomf
Thus
a o fi(Ad) = o o fy(4)

f1(d) = f2(4)

Since & is full,

3.2. Theorem
Let A € 0 and suppose that for a Borel function f, f(A4) is defined.
(i) «od(domfNs(d)=1Vac.
(ii) s(4)< dom f.
(i) f(A)=Aof L
(iv) If g(f(4)) is defined, then so is (g o f)(4) and g(f(4d)) =
(g of)(4)
Proof: (i)
l=ao0A(dom fUs(4))=a o0 A( domf\s
+ oo Ad{dom fNs(A)) + oo A(s \domf
=a o A(dom f N s(4))
(ii) By Theorem 3.1, « 0o A(dom f) =1 for every « € &. Hence
oo A( domf = 1 for every « € &. Now apply 2.2(iv).
(iii) Let f be any extension of f. Then

Vaec, VEcA,
o0 f(A)(B) =« o f(A)(E) = a o A(f7HE))
= o A(fYE )ﬂdomf
+ a0 A(f1 N (Z\dom f))
—o o A(fYE )ﬂdomf)—ocoAf YE
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(iv) This follows at once from (iii).

3.3. Lemma

Let A € @, and let f be a Borel function such that f(A) is defined.
Then

s(f(4)) = f(s(4))
Proof :

a0 f(A)(f(s(4))) =« 0 A(f7(f(5(4))) = « 0 A(dom f N s(4)) = 1.
Hence Vx e &, o f(4)(f(s(4))) =1 and so by 2.2(iv), s(f(4)) <
f(s(4)).

3.4. Theorem

If fis continuous on s(4), or if f has a continuous extension to s(4),
and if f(4) exists, then

Proof : By 3.3 it suffices to prove that f(s(4)) = s(f(4)) Iffis a con-
tinuous extension of fto s(A), then f (4)= f yand f f (s(4)).

Thus it would suffice to show in this case that f(s(4 )) < s( f (4)). In
other words, we can suppose that f is defined and continuous on all of
s(4).

Let y € f(s(4)). Then there exists a sequence {x;} < s(4) such that
f(x;) — y. By 2.2(ii), we have that V &> 0 there exists « € & such that
o o A(x; — 8, z; + 8) # 0. Therefore, by continuity, V ¢> 0, there
exists o € &% such that

o f(A)(f(x) — e fla;) + €)= o 0 A(f T (f(w:) — € flz) + €))
> a o A((w; — 8¢(e, ), 2, + 8¢(e, 2;)) Ns(A) #0

Thus by 2.2(ii), f (z;) € 8(f(4)) V. Since s(f(4))is closed, y € s(f(4)).
An observable 4 is said to be bounded providing that s(4) is com-
pact. For bounded observables we obtain the following.

3.5. Corollary (Spectral Mapping Theorem)

If 4 is a bounded observable, f a Borel function defined and con-
tinuous on s(A4), then if f(4) exists, s(f(4)) = f(s(4)).

A e 0 is said to be invertible providing f(A4) exists for the function
f(®) = 1/x. In this case we write A~ = f(4). According to Theorem
3.1, A isinvertible ifand only if « 0 4({0}) =0 V « € &. In particular,
if 0 ¢ s(A), then A~ exists.

19
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3.6. Theorem
Let A € 0 be invertible. Then
(') (A7) exists and (A7) = 4.
(i) 0¢s(4) = A" is bounded.
(iti) A4 bounded = 0 ¢ s(A™1).
Proof: (i) Let
1jzfora + 0

f(x):{()forx:O

Then
A1 = f(A). Now o 0 A71({0}) = « o f(4) ({0})
=x 0 A(f1{0}) =x 0 A({0}) =0V ae S

whence 471! is invertible. Thus

A =f(f ) =(fof)(4)=4

(ii) 0 ¢ s(A) = there exists an open interval I = (—y,y) such that
0el<crd) Thus Z\I > Z\r(d)=s(4). Since 0 ¢ s(4), f(x) =1/x
is continuous on s(4) and so by Theorem 3.4,

(A7) = e =TT = [ |

Thus s(4~!) is compact.

The proof of (iii) is similar to (ii).

If we define fy: # — Z by fi(z) = x — A, then it is natural to write
A — d = f(4). We now show that spectra can be classified using 4 — A
in exactly the same manner as is usually done in operator theory.

3.7. Theorem
Let 4 €0.
(i) Aer(d) < (4 —X)~!exists and is bounded.
(i) Aep(d) < (4 — A~ does not exist.
(i) A ec{d) <= (4 — A)~! exists and is not bounded.
Proof: We first observe that V A f) is continuous on s(4). It follows
that
s(d—2A)=sd)—{A}
(i) (4 — AN lexists and is bounded
<= 0¢s(A—2)<=0¢s(d)— A} = Aés(4)<Aer(d)
(i) (4 —A)! fails to exist < 3 a € & such that « o A(fy*({0}) #

0 < 3 ¢ € & such that « 0 A({A}) #£ 0 < A € p(4).
(iii) A € ¢(4) < (i) and (ii) fail.
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4. The Spectral Theorem

As mentioned before, if I is the projection lattice of a Hilbert space
A, then the observables can be identified with the set of self-adjoint
operators on . Then, via the spectral theorem for self-adjoint
operators, there is a one-to-one correspondence between observables
and spectral resolutions of the identity. In this section we will show
that the same result is possible for any logic L. The author would like
to thank D. J. Foulis who showed him the details of this section.

By a real (respectively rational) spectral resolution in L we mean a
function e:% — L (resp. e: 2 — L where 2 is the set of rational
numbers) such that the following conditions are satisfied

(11)

(12)

(13) vaex=1,

(14) A ex=e¢,forall p e Z (resp. 2).

pL<A
It is quite clear that if 4 € 0, then the function e*:%# — L defined

by ef = A((—ew, A]) is a spectral resolution in L. On the other hand, it
e)is a spectral resolution in L, does there exist an A4 such that ey = e} ?
We will show that providing the range of ¢ is contained in a Boolean
o-subalgebra of L, that the answer is yes. This last requirement is a
reasonable one since for any A € ¢, range A is a Boolean o-subalgebra
of L. Thus our problem is reduced to proving the following lemama.

4.1. Lemma

Let B be a Boolean s-algebra. Then if ¢ is any spectral resolution in
B, there exists a B-valued Borel measure A such that ey = A{(—o, A]).

The proof of this Jemma involves a construction that hinges on the
folowing obvious but crucial lemma,

4.2. Lemma

Let B be a Boolean o-algebra. Then there is a one-to-one corre-
spondence between real and rational spectral resolutions on B as
follows:

(i) if e:# — B is a real spectral resolution, then the rational
spectral resolution f associated with it is given by f = ¢| 4, and

(i) if f: 2 — B is a rational spectral resolution, then the real
spectral resolution e associated with it is given by

er= A{fu“" €2, A<p}
19%
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For the remainder of this section we shall suppose that B is a
Boolean o-algebra. By Loomis Theorem (Halmos, 1950, p. 171, 15¢)
there exists a measurable space (X, .#) and a o-ideal 4" <.# such
that B ~.#/./". We propose to identify B with .#/4" and to let
n:# — B be the natural epimorphism. Now suppose ¢:Z# — B is a
real spectral resolution and let f: 2 — B be the restriction of e to 2.
For each rational number A € 2 choose a set F) e.# such that

F)) = f). Then for each X € 2 define

Fy= ﬂ{F [A<p,pe2}
It is easily seen that if \,u € 2 with A < u, then F), < F Also a simple
computation shows that for every A € 2, (F)) = f). N ow define

7, :ﬁA\( N F)
o€l
It then follows that A, € 2 with A < u that £ < F Also, /\ﬂ Fy=0
€2
and 5(F)) = fy. Finally, define
FyifA<0,Ae2

Fr= F,\U(X\UFU) 0<Ae2
ge2

4.3. Lemma

{F)|A € 2} is a rational spectral resolution in .# and (F,) = f) for
all X e 2.

Proof: Conditions (11), (12), and (14) are clearly satisfied.

v,\F,\=U/\F,\=(/\L<JOFA) U ( U/\ (F/‘U(X\U Fc)))

o< cge2

—(Um)u(Ym)u(ayr)
(Y m)u(oyr)-

and so (13) holds also.
If X < 0, then (F)) = fy is clear. If 0 < A, then

n(F,\)=n(FA U (X\U F’a)) =n(Fpv n(X\U Fo)

cel ce2

s 2 e ) = )
=fav 1l =fiv 0=/,
In any case, n(F)) = f).
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We next apply Lemma 4.2 to the rational spectral resolution F and
obtain a real spectral resolution £:% -» .#. It is easily checked that

n(E)) = ey
4.4. Lemma

Let (X,.#) be any measurable space and let {E,|A € Z} be any
spectral resolution in .#. Then there exists a unique measurable
function f: X — # (measurableinthesensethat £ € Z = f~YE) € 4)

such that
By =f"Y(—e,])

Proof : Define f(x) = inf{A € Z|x € E,}. It is then a straightforward
argument to show that f~*((—ew, A]) = E,. Since f~! preserves comple-
ments and countable unions it follows that f is measurable.

Lemma 4.4 essentially concludes our construction. It follows from
this that if e:#Z — B is a real spectral resolution that there exists a
unique B-valued measure 4 : % — Bsuch that A((—cw,)]) =¢, VAeZ.
To see this, lift e to a spectral resolution {£,|A € Z}in .#. Construct f
asin4.4andlet 4 = o f~%

All of the following can be collected in the following theorem.

4.5. Theorem (The Spectral Theorem)

Let e: % — L be a real spectral resolution, B a o-subalgebra of I
containing range e. Then there exists a unique observable 4 on L such
that

(i) range A < B,
(il) A((—o,Al) = ey
Conversely, if 4 is any observable on L, then range 4 is a Boolean

o-subalgebra of L and ey = A((—x, A]) defines a real spectral resolution
in L.

5. Expectation

For each observable 4 and each state «,« o 4 is a Borel probability
measure. Thus, one can define a real number called the expectation of A
in the state o (when it exists), written exp,(4), by the integral

exp,(4) = f id(o 0 A)
3

where i is the identity function. If e, is the spectral resolution associ-
ated with A, then this can be written as the Stieltjes integral

e}

exp,(4) = f Xde(ey).

— 00
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If A4 is bounded then it is clear that exp,(4) exists for all states «.
If Aisunbounded, exp,(4) may not exist, e.g., the position observable
in ordinary quantum mechanics. Nevertheless, we can establish the
following.

5.1. Theorem

Let 4 be any observable, « any state, and f any Borel function such
that

(i) f(4) exists, and
1) ffdoc o A exists.
2

Then exp,(f(4)) exists and moreover

expy(f(A)= [ fdlzo4)

domfns(4)
Proof: Let
_ {f(x) x € dom f
9(@) = :O x ¢ dom f
Then
exp,(f(4)) = expy(g(4)) = [ id(x 0 4 0 g1
%
- f id(codog)= f id(o 0 A o gl
s(g(4)) G
since by 3.3,

s(@(d)) = g(s(4))  and  (x o g(d))g(s(4))\s(g(4))] =
Thus by Halmos (1950, p. 163, Theorem C),

exp(f(A)= [ gdlzoA)

g-1(g(s(4)))

But since
s(4) = g Hg(s(4))) < g~ Hg(s(4)))
and
(« 0 4) (g7 Hg(s(A))N\s(4)) =
we have

exp,(f(A) = [ gdlaod)= [ filuod)

s(4) domfs(4)
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